Abstract

Similarity between patterns is commonly used in many distance-based classification algorithms like KNN or RBF. Generalized Euclidean Distances (GED) can be optimized in order to improve the classification success rate in distance-based algorithms. This idea can be extended to any classification algorithm, because it can be shown that a GEDs is equivalent to a linear transformations of the dataset. In this paper, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is applied to the optimization of linear transformations represented as matrices. The method has been tested on several domains and results show that the classification success rate can be improved for some of them. However, in some domains, diagonal matrices get higher accuracies than full square ones. In order to solve this problem, we propose in the second part of the paper to represent linear transformations by means of rotation angles and scaling factors, based on the Singular Value Decomposition theorem (SVD). This new representation solves the problems found in the former part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.