Abstract

Secret sharing is a cryptographic primitive that divides a secret into several shares, and allows only some combinations of shares to recover the secret. As it can also be used in secure multi-party computation protocol with outsourcing servers, several variations of secret sharing are devised for this purpose. Most of the existing protocols require the number of computing servers to be determined in advance. However, in some situations we may want the system to be “evolving”. We may want to increase the number of servers and strengthen the security guarantee later in order to improve availability and security of the system. Although evolving secret sharing schemes are available, they do not support computing on shares. On the other hand, “homomorphic” secret sharing allows computing on shares with small communication, but they are not evolving. As the contribution of our work, we give the definition of “evolving homomorphic” secret sharing supporting both properties. We propose two schemes, one with hierarchical access structure supporting multiplication, and the other with partially hierarchical access structure supporting computation of low degree polynomials. Comparing to the work with similar functionality of Choudhuri et al. (IACR ePrint 2020), our schemes have smaller communication costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.