Abstract

The strengthening and the weakening of synaptic strength in existing Bienenstock-Cooper-Munro (BCM) learning rule are determined by a long-term potentiation (LTP) sliding modification threshold and the afferent synaptic activities. However, synaptic long-term depression (LTD) even affects low-active synapses during the induction of synaptic plasticity, which may lead to information loss. Biological experiments have found another LTD threshold that can induce either potentiation or depression or no change, even at the activated synapses. In addition, existing BCM learning rules can only select a set of fixed rule parameters, which is biologically implausible and practically inflexible to learn the structural information of input signals. In this article, an evolved dual-threshold BCM learning rule is proposed to regulate the reservoir internal connection weights of the echo-state-network (ESN), which can contribute to alleviating information loss and enhancing learning performance by introducing different optimal LTD thresholds for different postsynaptic neurons. Our experimental results show that the evolved dual-threshold BCM learning rule can result in the synergistic learning of different plasticity rules, effectively improving the learning performance of an ESN in comparison with existing neural plasticity learning rules and some state-of-the-art ESN variants on three widely used benchmark tasks and the prediction of an esterification process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.