Abstract

This paper presents an initial approach for creating autonomous controllers for the car racing game using a hybrid technique. The Differential Evolution (DE) algorithm is combined with Feed-forward Artificial Neural Networks (FFANNs) to generate the required intelligent controllers in a well-known car racing game, namely The Open Racing Car Simulator (TORCS). TORCS is used as a platform in most of the IEEE conference competitions. The main objective of this research is to test the feasibility of the DE implementation in TORCS platform. The literature showed that the application of DE in Real Time Strategy game returned promising results in evolving the required strategy gaming controllers. Interestingly, there is still no study thus far that has been conducted in applying DE into TORCS game platform. This research result shows that DE performed well in TORCS even though a very simple fitness function was used. This indicates that DE has well-tuned the neural network weights to generate optimal and sub-optimal controllers in TORCS.

Highlights

  • This paper presents an initial approach for creating autonomous controllers for the car racing game using a hybrid technique

  • The Differential Evolution (DE) algorithm is combined with Feed-forward Artificial Neural Networks (FFANNs) to generate the required intelligent controllers in a well-known car racing game, namely The Open Racing Car Simulator (TORCS)

  • The main objective of this research is to test the feasibility of the DE implementation in TORCS platform

Read more

Summary

Introduction

This paper presents an initial approach for creating autonomous controllers for the car racing game using a hybrid technique. The Differential Evolution (DE) algorithm is combined with Feed-forward Artificial Neural Networks (FFANNs) to generate the required intelligent controllers in a well-known car racing game, namely The Open Racing Car Simulator (TORCS).

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.