Abstract

For many years, researchers in the field of mobile robotics have been investigating the use of genetic and evolutionary computation (GEC) to aid the development of mobile robot controllers. Alongside the fundamental choices of the GEC mechanism and its operators, which apply to both simulated and physical evolutionary robotics, other issues have emerged which are specific to the application of GEC to physical mobile robotics. This article presents a survey of recent methods in GEC-developed mobile robot controllers, focusing on those methods that include a physical robot at some point in the learning loop. It simultaneously relates each of these methods to a framework of two orthogonal issues: the use of a simulated and/or a physical robot, and the use of finite, training phase evolution prior to a task and/or lifelong adaptation by evolution during a task. A list of evaluation criteria are presented and each of the surveyed methods are compared to them. Analyses of the framework and evaluation criteria suggest several possibilities; however, there appear to be particular advantages in combining simulated, training phase evolution (TPE) with lifelong adaptation by evolution (LAE) on a physical robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.