Abstract

To study open-ended coevolution, we define a complexity metric over interacting finite state machines playing formal language prediction games, and study the dynamics of populations under competitive and cooperative interactions. In the past purely competitive and purely cooperative interactions have been studied extensively, but neither can successfully and continuously drive an arms race. We present quantitative results using this complexity metric and analyze the causes of varying rates of complexity growth across different types of interactions. We find that while both purely competitive and purely cooperative coevolution are able to drive complexity growth above the rate of genetic drift, mixed systems with both competitive and cooperative interactions achieve significantly higher evolved complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.