Abstract

Genetic programming (GP) is a variant of genetic algorithms where the data structures handled are trees. This makes GP especially useful for evolving functional relationships or computer programs, as both can be represented as trees. Symbolic regression is the determination of a function dependence y=g(x) that approximates a set of data points (xi, yi). In this paper the feasibility of symbolic regression with GP is demonstrated on two examples taken from different domains. Furthermore several suggested methods from literature are compared that are intended to improve GP performance and the readability of solutions by taking into account introns or redundancy that occurs in the trees and keeping the size of the trees small. The experiments show that GP is an elegant and useful tool to derive complex functional dependencies on numerical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.