Abstract

We consider coarse-graining applied to nonselfintersecting planar centervortex loops as they emerge in the confining phase of an SU(2) Yang-Mills theory. Well-established properties of planar curve-shrinking predict that a suitably defined, geometric effective action exhibits (mean-field) critical behavior when the conformal limit of circular points is reached. This suggests the existence of an asymptotic mass gap. We demonstrate that the initially sharp mean center-of-mass position in a given ensemble of curves develops a variance under the flow as is the case for a position eigenstate in free-particle quantum mechanics under unitary time evolution. A possible application of these concepts is an approach to high- superconductivity based (a) on the nonlocal nature of the electron (1 fold selfintersecting center-vortex loop) and (b) on planar curve-shrinking flow representing the decrease in thermal noise in a cooling cuprate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.