Abstract

Classification is one of the fundamental tasks of data mining. Most rule induction and decision tree algorithms perform a local, greedy search to generate classification rules that are often more complex than necessary. Evolutionary algorithms for pattern classification have recently received increased attention because they can perform global searches. In this paper, we propose a new approach for discovering classification rules by using gene expression programming (GEP), a new technique of genetic programming (GP) with linear representation. The antecedent of discovered rules may involve many different combinations of attributes. To guide the search process, we suggest a fitness function considering both the rule consistency gain and completeness. A multiclass classification problem is formulated as multiple two-class problems by using the one-against-all learning method. The covering strategy is applied to learn multiple rules if applicable for each class. Compact rule sets are subsequently evolved using a two-phase pruning method based on the minimum description length (MDL) principle and the integration theory. Our approach is also noise tolerant and able to deal with both numeric and nominal attributes. Experiments with several benchmark data sets have shown up to 20% improvement in validation accuracy, compared with C4.5 algorithms. Furthermore, the proposed GEP approach is more efficient and tends to generate shorter solutions compared with canonical tree-based GP classifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.