Abstract
Convolutional neural networks (CNNs) have shown decent performance in a variety of computer vision tasks. However, these network configurations are largely hand-crafted, which leads to inefficiency in the constructed network. Various other algorithms have been proposed to address this issue, but the inefficiencies resulting from human intervention have not been addressed. Our proposed EvolveNet algorithm is a task-agnostic evolutionary search algorithm that can find optimal depth and width scales automatically in an efficient way. The optimal configurations are not found using grid search, and are instead evolved from an existing network. This eliminates inefficiencies that emanate from hand-crafting, thus reducing the drop in accuracy. The proposed algorithm is a framework to search through a large search space of subnetworks until a suitable configuration is found. Extensive experiments on the ImageNet dataset demonstrate the superiority of the proposed method by outperforming the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.