Abstract
The neural network ensemble (NNE) is a very effective way to obtain a good prediction performance by combining the outputs of several independently trained neural networks. Swarm intelligence is applied here to model the population of interacting agents or swarms that are able to self-organize. In this paper, we combine NNE and multi-population swarm intelligence to construct our improved neural network ensemble (INNE). First, each component forward neural network (FNN) is optimized by chaotic particle swarm optimization (CPSO) and gradient gescending (GD) algorithm. Second, in contrast to most existing NNE training algorithm, we adopt multiple obviously different populations to construct swarm intelligence. As an example, one population is trained by particle swarm optimization (PSO) and the others are trained by differential evolution (DE) or artificial bee colony algorithm (ABC). The ensemble weights are trained by multi-population co-evolution PSO-ABC-DE chaotic searching algorithm (M-PSO-ABC-DE-CS). Our experiments demonstrate that the proposed novel INNE algorithm is superior to existing popular NNE in function prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.