Abstract

A key problem in genomics is the classification and annotation of sequences in a genome. A major challenge is identifying good sequence features. Evolutionary algorithms have the potential to search a large space of features and automatically generate useful ones. This paper proposes a two-stage method that generates features using multiple replicates of a genetic algorithm operating on an augmented finite state machine, called a side effect machine (SEM), and then selects a small diverse feature set using several methods, including a novel method called dissimilarity clustering. We apply our method to three problems related to transposable elements and compare the results to those using k-mer features. We are able to produce a small set of interesting and comprehensible features that create random forest classifiers more accurate and less prone to overfitting than those created using k-mer features. We analyze the SEM fitness landscapes and discuss the use of different fitness functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.