Abstract
Evolution and maintenance of genetic recombination and its relation to the mutational process is a long-standing, fundamental problem in evolutionary biology that is linked to the general problem of evolution of evolvability. We explored a stochastic model of the evolution of recombination using additive fitness and infinite allele assumptions but no assumptions on the sign or magnitude of the epistasis and the distribution of mutation effects. In this model, fluctuating negative epistasis and predominantly deleterious mutations arise naturally as a consequence of the additive fitness and a reservoir from which new alleles arrive with a fixed distribution of fitness effects. Analysis of the model revealed a nonmonotonic effect of recombination intensity on fitness, with an optimal recombination rate value which maximized fitness in steady state. The optimal recombination rate depended on the mutation rate and was evolvable, that is, subject to selection. The predictions of the model were compatible with the observations on the dependence between genome rearrangement rate and gene flux in microbial genomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.