Abstract

Why evolvability appears to have increased over evolutionary time is an important unresolved biological question. Unlike most candidate explanations, this paper proposes that increasing evolvability can result without any pressure to adapt. The insight is that if evolvability is heritable, then an unbiased drifting process across genotypes can still create a distribution of phenotypes biased towards evolvability, because evolvable organisms diffuse more quickly through the space of possible phenotypes. Furthermore, because phenotypic divergence often correlates with founding niches, niche founders may on average be more evolvable, which through population growth provides a genotypic bias towards evolvability. Interestingly, the combination of these two mechanisms can lead to increasing evolvability without any pressure to out-compete other organisms, as demonstrated through experiments with a series of simulated models. Thus rather than from pressure to adapt, evolvability may inevitably result from any drift through genotypic space combined with evolution's passive tendency to accumulate niches.

Highlights

  • An unbroken hereditary chain links the simplest early replicators to the most complex modern macroscopic organisms

  • The first is that an unbiased drifting process over genotypes can produce a distribution of phenotypes biased towards increasing evolvability, and the second is that founder effects for discovering niches can provide a genotypic bias towards true evolvability increase

  • While such non-adaptive explanations do not contradict more popular adaptive explanations, they call them into question because the mechanisms shown here require fewer assumptions, i.e. they result from the structure of the genotype-phenotype map and founder effects from uncovering new niches instead of particular transient selective pressures

Read more

Summary

Introduction

An unbroken hereditary chain links the simplest early replicators to the most complex modern macroscopic organisms. The end result is that overall evolvability, i.e. not just its appearance, may increase over time in nature – but not due to adaptive pressure to out-compete other organisms, which is a foundational assumption that underlies many other theories for the rise of evolvability [1,2,3,4,5,6,7,8] Supporting this second hypothesis, further experiments with growing populations in which evolution is initiated within a single niche, and where each niche has a limited capacity (but where selection is random within a niche) demonstrate a significant trend towards increasing genotypic evolvability over time. The surprising conclusion is that increasing evolvability may not result from selective pressure to adapt, but may instead be an inevitable byproduct of how evolvability warps the distribution of phenotypes and the tendency for founding new niches to amplify evolvable organisms

Experiments
Conclusions
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.