Abstract

The presence of water molecules in air introduces complexities to residual charge transports and energy relaxations that may provoke streamer discharge instabilities under repetitive pulses. Evolutions of pulse-periodic positive streamer dynamics were investigated in humid air. Pulse-sequence and temporally resolved diagnostics were implemented to capture discharge evolutions. The streamer development and evolutions of charged species in humid air are qualitatively analyzed based on a 2D–0D combined simulation. Evolution features of streamer behaviors in humid air include the faster filamentation of the primary streamer, pronounced propagation selectivity to previous secondary streamers, more branches of both primary and secondary streamers, and accelerated secondary streamer into stagnation. The repetitively pulsed breakdown is proceeded by the progressive axial prolongation of secondary streamers with bright heads and faint tails. Nonintuitively, the withstanding capability does not illustrate dramatic differences in dry air and humid air especially at high pulse repetition frequency. High-density residing hydrated ions with high electron bound energies (impeding streamer propagation) and the enhanced thermal release to cause higher reduced electric field (facilitating streamer propagation) may contrarily affect evolutions and discharge instability developments of positive streamer in humid air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call