Abstract

AbstractAimThe evolutionary causes of the latitudinal diversity gradient are debated. Hypotheses have ultimately invoked either faster rates of diversification in the tropics or more time for diversification owing to the tropical origins of higher taxa. Here, we perform the first test of the diversification rate and time hypotheses in freshwater ray‐finned fishes, a group comprising nearly a quarter of all living vertebrates.LocationGlobal.Time period368–0 Ma.Major taxa studiedExtant freshwater ray‐finned fishes.MethodsUsing a mega‐phylogeny of actinopterygian fishes and a global database of occurrence records, we estimated net diversification rates, the number of colonizations and regional colonization times of co‐occurring species in freshwater drainage basins. We used generalized additive models to test whether these factors were related to latitude. We then compared the influence of diversification rates, numbers of colonizations, colonization times and surface area on species richness, and how these factors are related to each other.ResultsAlthough both diversification rates and time were related to richness, time had greater explanatory power and was more strongly related to latitude than diversification rates. Other factors (basin surface area and number of colonizations) also helped to explain richness but were unrelated to latitude. The most diverse freshwater basins of the world (Amazon and Congo rivers) were dominated by lineages having Mesozoic origins. The temperate groups dominant today arrived near the Cretaceous–Palaeogene boundary, leaving comparatively less time to build richness. Diversification rates and colonization times were inversely related: recently colonized basins had the fastest rates, whereas ancient species‐rich faunas had slower rates.Main conclusionsWe concluded that time is the leading driver of latitudinal disparities in richness in freshwater fish faunas. We suggest that the most likely path to building very high species richness is through diversification over long periods of time, rather than through rapid diversification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call