Abstract

Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental conditions, we conclude that a systems approach is necessary to unravel the full effects of amino acid biosynthetic cost in complex biological systems.

Highlights

  • Everything in a living cell has a cost: from the energy needed to transform molecules against thermodynamic equilibria, to the raw materials needed to produce the constituents of a new cell

  • flux balance analysis (FBA) uses the matrix of reactions in a genome scale model to find the optimal combination of reactions that consume available nutrients to produce the metabolites required for new cellular growth

  • We only investigated the explanatory power of our cost measures estimated under glucose limiting conditions, as this is the environment thought to be most relevant to yeast biology [11,16,17]

Read more

Summary

Introduction

Everything in a living cell has a cost: from the energy needed to transform molecules against thermodynamic equilibria, to the raw materials needed to produce the constituents of a new cell. Natural selection may be expected to minimise such cellular costs, and evidence for adaptation to require less energy or matter may exist at the molecular or cellular level This theory is described as the cost minimisation hypothesis. Craig and Weber [1] pioneered the quantitative analysis of cost at the cellular level to investigate the effects on the synthesis and evolution of a small number of Escherichia coli proteins. These authors estimated the cost of a protein as the per-residue average of how many units of high energy phosphate bonds (e.g. ATP) and reducing hydrogen atoms (e.g. NADPH) are diverted from the available energy pool to produce each of the constituent amino acids from glucose. This work provided the first genome-wide evidence that evolution has optimised prokaryotic cells to use less expensive amino acids in highly expressed proteins and established an important link between the metabolism of a cell and the evolution of its genome sequence

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call