Abstract

The human X chromosome exhibits four "evolutionary strata," interpreted to represent distinct steps in the process whereby recombination became arrested between the proto X and proto Y. To test if this is a general feature of sex chromosome evolution, we studied the Z-W sex chromosomes of birds, which have female rather than male heterogamety and evolved from a different autosome pair than the mammalian X and Y. Here we analyze all five known gametologous Z-W gene pairs to investigate the "strata" hypothesis in birds. Comparisons of the rates of synonymous substitution and intronic divergence between Z and W gametologs reveal the presence of at least two evolutionary strata spread over the p and q arms of the chicken Z chromosome. A phylogenetic analysis of intronic sequence data from different avian lineages indicates that Z-W recombination ceased in the oldest stratum (on Zq; CHD1Z, HINTZ, and SPINZ) 102-170 million years ago (MYA), before the split of the Neoaves and Eoaves. However, recombination continued in the second stratum (on Zp; UBAP2Z and ATP5A1Z) until after the divergence of extant avian orders, with Z and W diverging 58-85 MYA. Our data suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.