Abstract

The transition between the supercontinents Columbia and Rodina coincided with a delay in eukaryote expansion during the Mesoproterozoic, however, the cause for this association is uncertain. Here, we use statistical geochemical analyses of igneous and fine-grained siliciclastic rocks to demonstrate that extensive crustal differentiation occurred during this transition interval. The results show a relative increase in abundance of phosphorus-poor felsic volcanic and plutonic rocks and a prevailing low weathering intensity between ∼ 1.8 and 1.2 Ga (billion years ago). The decelerated weathering of phosphorus-poor felsic volcanic and plutonic rocks could have maintained the low flux of bio-essential nutrients to the oceans that sustained low primary productivity and atmospheric O2 levels, which inhibited biologic radiation during the Columbia-Rodinia supercontinent transition period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call