Abstract
This paper presents a grammatical evolution (GE)-based methodology to automatically design third generation artificial neural networks (ANNs), also known as spiking neural networks (SNNs), for solving supervised classification problems. The proposal performs the SNN design by exploring the search space of three-layered feedforward topologies with configured synaptic connections (weights and delays) so that no explicit training is carried out. Besides, the designed SNNs have partial connections between input and hidden layers which may contribute to avoid redundancies and reduce the dimensionality of input feature vectors. The proposal was tested on several well-known benchmark datasets from the UCI repository and statistically compared against a similar design methodology for second generation ANNs and an adapted version of that methodology for SNNs; also, the results of the two methodologies and the proposed one were improved by changing the fitness function in the design process. The proposed methodology shows competitive and consistent results, and the statistical tests support the conclusion that the designs produced by the proposal perform better than those produced by other methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.