Abstract

Protein excited states are fundamental in the understanding of biological function, despite the fact they are hardly observed using traditional biophysical methodologies. Pressure perturbation coupled with nuclear magnetic resonance (NMR) spectroscopy is a powerful physicochemical tool to glance at these low-populated high-energy states on a residue-by-residue basis and underpin mechanistic insights into protein functionalities. Here we performed pressure titrations using NMR spectroscopy and relaxation dispersion experiments to identify the low-lying energetic states of the c-Abl SH2 domain. By showing that the SH2 excited state contains a hydrated hydrophobic cavity, fast-exchange motions, and highly conserved residues facing the water-accessible hole, we discuss the implications of water-protein interactions in SH2 modules achieving high-affinity binding and promiscuous phospho-Tyr peptide recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.