Abstract

Evolutionary Robotics provide efficient tools and approach to address automatic design of controllers for autonomous mobile robots. However, the computational cost of the optimization process makes it difficult to evolve controllers directly into the real world. This paper addresses the key problem of transferring into the real world a robotic controller that has been evolved in a robotic simulator. The approach presented here relies on the definition of an anticipation-enabled control architecture. The anticipation module is able to build a partial model of the simulated environment and, once in the real world, performs an error estimation of this model. This error can be reused so as to perform in-situ online adaptation of robot control. Experiments in simulation and real-world showed that an evolved robot is able to perform on-line recovery from several kind of locomotion perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.