Abstract

BackgroundBasic helix-loop-helix and homeodomain transcription factors have been shown to specify all different neuronal cell subtypes composing the vertebrate retina. The appearance of gene paralogs of such retina-specific transcription factors in lower vertebrates, with differently evolved function and/or conserved non-coding elements, might provide an important source for the generation of neuronal diversity within the vertebrate retinal architecture. In line with this hypothesis, we investigated the evolution of the homeobox Barhl family of transcription factors, barhl1 and barhl2, in the teleost and tetrapod lineages. In tetrapod barhl2, but not barhl1, is expressed in the retina and is important for amacrine cell specification. Zebrafish has three barhl paralogs: barhl1.1, barhl1.2 and barhl2, but their precise spatio-temporal retinal expression, as well as their function is yet unknown.ResultsHere we performed a meticulous expression pattern comparison of all known barhl fish paralogs and described a novel barhl paralog in medaka. Our detailed analysis of zebrafish barhl gene expression in wild type and mutant retinas revealed that only barhl1.2 and barhl2 are present in the retina. We also showed that these two paralogs are expressed in distinct neuronal lineages and are differently regulated by Atoh7, a key retinal-specific transcription factor. Finally, we found that the two retained medaka fish barhl paralogs, barhl1 and barhl2, are both expressed in the retina, in a pattern reminiscent of zebrafish barhl1.2 and barhl2 respectively. By performing phylogenetic and synteny analysis, we provide evidence that barhl retinal expression domain is an ancestral feature, probably lost in tetrapods due to functional redundancy.ConclusionsFunctional differences among retained paralogs of key retina-specific transcription factors between teleosts and tetrapods might provide important clues for understanding their potential impact on the generation of retinal neuronal diversity. Intriguingly, within teleosts, retention of zebrafish barhl1.2 and its medaka ortholog barhl1 appears to correlate with the acquisition of distinct signalling mechanisms by the two genes within distinct retinal cell lineages. Our findings provide a starting point for the study of barhl gene evolution in relation to the generation of cell diversity in the vertebrate retina.

Highlights

  • Basic helix-loop-helix and homeodomain transcription factors have been shown to specify all different neuronal cell subtypes composing the vertebrate retina

  • The vertebrate retina is organized into a complex network of cell layers, namely the ganglion cell layer (GCL) which contains retinal ganglion cells (RGCs) and displaced amacrine cells (ACs), the inner nuclear layer (INL) which consists of ACs, horizontal, bipolar and Müller glia cells, and the outer nuclear layer (ONL) which is made up of cone and rod photoreceptors

  • Zebrafish barhl1.2 and barhl2, but not barhl1.1, are expressed in distinct spatio-temporal domains of the developing retina In light of the distinct expression of barhl1 and barhl2 in the tetrapod retina, we aimed at clarifying the retinal expression domains spanned by each of the three paralogs to get further insight into a possible non-redundant function of barhl paralogs in the zebrafish retina

Read more

Summary

Introduction

Basic helix-loop-helix and homeodomain transcription factors have been shown to specify all different neuronal cell subtypes composing the vertebrate retina. The appearance of gene paralogs of such retinaspecific transcription factors in lower vertebrates, with differently evolved function and/or conserved non-coding elements, might provide an important source for the generation of neuronal diversity within the vertebrate retinal architecture In line with this hypothesis, we investigated the evolution of the homeobox Barhl family of transcription factors, barhl and barhl, in the teleost and tetrapod lineages. By comparing the expression of medaka barhl and barhl, we found that they are both expressed in the retina, in a pattern reminiscent of zebrafish barhl1.2 and barhl respectively These results combined with phylogenetic and synteny analysis suggest that barhl retinal expression domain is an ancestral feature that has been lost in tetrapod probably due to functional redundancy following the duplication-supplementation paradigm [3,4]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.