Abstract
BackgroundThe assembly of animal microbiomes is influenced by multiple environmental factors and host genetics, although the relative importance of these factors remains unclear. Bifidobacteria (genus Bifidobacterium, phylum Actinobacteria) are common first colonizers of gut microbiomes in humans and inhabit other mammals, social insects, food, and sewages. In humans, the presence of bifidobacteria in the gut has been correlated with health-promoting benefits. Here, we compared the genome sequences of a subset of the over 400 Bifidobacterium strains publicly available to investigate the adaptation of bifidobacteria diversity. We tested 1) whether bifidobacteria show a phylogenetic signal with their isolation sources (hosts and environments) and 2) whether key traits encoded by the bifidobacteria genomes depend on the host or environment from which they were isolated. We analyzed Bifidobacterium genomes available in the PATRIC and NCBI repositories and identified the hosts and/or environment from which they were isolated. A multilocus phylogenetic analysis was conducted to compare the genetic relatedness the strains harbored by different hosts and environments. Furthermore, we examined differences in genomic traits and genes related to amino acid biosynthesis and degradation of carbohydrates.ResultsWe found that bifidobacteria diversity appears to have evolved with their hosts as strains isolated from the same host were non-randomly associated with their phylogenetic relatedness. Moreover, bifidobacteria isolated from different sources displayed differences in genomic traits such as genome size and accessory gene composition and on particular traits related to amino acid production and degradation of carbohydrates. In contrast, when analyzing diversity within human-derived bifidobacteria, we observed no phylogenetic signal or differences on specific traits (amino acid biosynthesis genes and CAZymes).ConclusionsOverall, our study shows that bifidobacteria diversity is strongly adapted to specific hosts and environments and that several genomic traits were associated with their isolation sources. However, this signal is not observed in human-derived strains alone. Looking into the genomic signatures of bifidobacteria strains in different environments can give insights into how this bacterial group adapts to their environment and what types of traits are important for these adaptations.
Highlights
The assembly of animal microbiomes is influenced by multiple environmental factors and host genetics, the relative importance of these factors remains unclear
The genomic signatures of bifidobacteria strains in different environments can give insights into how this bacterial group adapts to their environment and what types of traits are important for these adaptations
We focused on two particular classes of genes: amino acid biosynthesis genes and carbohydrateactive enzymes (CAZymes)
Summary
The assembly of animal microbiomes is influenced by multiple environmental factors and host genetics, the relative importance of these factors remains unclear. Bifidobacteria (genus Bifidobacterium, phylum Actinobacteria) are common first colonizers of gut microbiomes in humans and inhabit other mammals, social insects, food, and sewages. Bacteria are central to the evolution and ecology of animals influencing their genomes, development, and physiology [1]. Bifidobacteria are grampositive, anaerobic, saccharolytic bacteria, members of the genus Bifidobacterium of the phylum Actinobacteria [7]. Their presence in the gut has been correlated with health-promoting benefits in humans and mouse models including the production of metabolites like vitamins and antioxidants, immune system development, and protection from certain gut diseases such as enterocolitis and acute diarrhea [8]. This process produces short-chain fatty acids (SCFAs) such as butyrate, acetate, and propionate, which have been linked to reducing the risk of inflammatory diseases, heart disease, type II diabetes, and other adverse conditions such as cancer [15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.