Abstract

In this paper, a robust radial basis function (RBF) network based classifier is proposed for polarimetric synthetic aperture radar (SAR) images. The proposed feature extraction process utilizes the covariance matrix elements, the H/α/A decomposition based features combined with the backscattering power (span), and the gray level co-occurrence matrix (GLCM) based texture features, which are projected onto a lower dimensional feature space using principal components analysis. For the classifier training, both conventional backpropagation (BP) and multidimensional particle swarm optimization (MD-PSO) based dynamic clustering are explored. By combining complete polarimetric covariance matrix and eigenvalue decomposition based pixel values with textural information (contrast, correlation, energy, and homogeneity) in the feature set, and employing automated evolutionary RBF classifier for the pattern recognition unit, the overall classification performance is shown to be significantly improved. An experimental study is performed using the fully polarimetric San Francisco Bay and Flevoland data sets acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (AIRSAR) at L-band to evaluate the performance of the proposed classifier. Classification results (in terms of confusion matrix, overall accuracy and classification map) compared with the major state of the art algorithms demonstrate the effectiveness of the proposed RBF network classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.