Abstract

The evolution of bacterial endosymbiont genomes is strongly influenced by host-driven selection. Factors affecting host genome evolution will potentially affect endosymbiont genomes in similar ways. One potential outcome is correlations in molecular rates between the genomes of the symbiotic partners. Recently, we presented the first evidence of such correlations between the mitochondrial genomes of cockroaches and the genomes of their endosymbiont (Blattabacterium cuenoti). Here we investigate whether similar patterns are found in additional host-symbiont partners. We use partial genome data from multiple strains of the bacterial endosymbionts Buchnera aphidicola and Sulcia muelleri, and the mitochondrial genomes of their sap-feeding insect hosts. Both endosymbionts show phylogenetic congruence with the mitochondria of their hosts, a result that is expected due to their identical mode of inheritance. We compared root-to-tip distances and branch lengths of phylogenetically independent species pairs. Both analyses showed a highly significant correlation of molecular rates between thegenomes of Buchnera and themitochondrial genomes of their hosts. A similar correlation was detected between Sulcia and their hosts, but was not statistically significant. Our results indicate that evolutionary rate correlations between hosts and long-term symbionts may be a widespread phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call