Abstract
Different mutation operators have been proposed in evolutionary programming, but for each operator there are some types of optimization problems that cannot be solved efficiently. A mixed strategy, integrating several mutation operators into a single algorithm, can overcome this problem. Inspired by evolutionary game theory, this paper presents a mixed strategy evolutionary programming algorithm that employs the Gaussian, Cauchy, Lévy, and single-point mutation operators. The novel algorithm is tested on a set of 22 benchmark problems. The results show that the mixed strategy performs equally well or better than the best of the four pure strategies does, for all of the benchmark problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.