Abstract

Program synthesis can be posed as a satisfiability problem and approached with generic SAT solvers. Only short programs can be however synthesized in this way. Program sketching by Solar-Lezama assumes that a human provides a partial program (sketch), and that synthesis takes place only within the uncompleted parts of that program. This allows synthesizing programs that are overall longer, while maintaining manageable computational effort. In this paper, we propose Evolutionary Program Sketching (EPS), in which the role of sketch provider is handed over to genetic programming (GP). A GP algorithm evolves a population of partial programs, which are being completed by a solver while evaluated. We consider several variants of EPS, which vary in program terminals used for completion (constants, variables, or both) and in the way the completion outcomes are propagated to future generations. When applied to a range of benchmarks, EPS outperforms the conventional GP, also when the latter is given similar time budget.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.