Abstract

The evolutionary dynamics in general two-sex two-phenotype frequency-dependent selection models are studied with respect to underlying multi-allele one-locus genetic systems. Two classes of equilibria come into play: genotypic equilibria, with equilibrium allelic frequencies independent of the phenotype, and phenotypic equilibria, which are characterized by equal mean phenotypic fitnesses. The exact conditions for genotypic equilibria to exist and be stable and for phenotypic equilibria to exist and be evolutionarily attractive are examined. Using adequate definitions of mean fitnesses in general contexts of frequency-dependent selection in dioecious populations, we show that two phenotypes, when they can coexist in the population, tend to balance their fitnesses as far as is allowed by the genetic system as more alleles responsible for phenotype determination are introduced into the population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.