Abstract
Hox genes are central to metazoan body plan formation, patterning and evolution, playing a critical role in cell fate decisions early in embryonic development in invertebrates and vertebrates. While the archetypical Hox gene cluster consists of members of nine ortholog groups (HOX1-HOX9), arrayed in close linkage in the order in which they have their anterior-posterior patterning effects, nematode Hox gene sets do not fit this model. The Caenorhabditis elegans Hox gene set is not clustered and contains only six Hox genes from four of the ancestral groups. The pattern observed in C. elegans is not typical of the phylum, and variation in orthologue set presence and absence and in genomic organisation has been reported. Recent advances in genome sequencing have resulted in the availability of many novel genome assemblies in Nematoda, especially from taxonomic groups that had not been analysed previously. Here, we explored Hox gene complements in high-quality genomes of 80 species from all major clades of Nematoda to understand the evolution of this key set of body pattern genes and especially to probe the origins of the “dispersed” cluster observed in C. elegans. We also included the recently available high-quality genomes of some Nematomorpha as an outgroup. We find that nematodes can have Hox genes from up to six orthology groups. While nematode Hox “clusters” are often interrupted by unrelated genes we identify species in which the cluster is intact and not dispersed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.