Abstract

Sound production by fishes has been recognized for millennia, but is typically regarded as comparatively rare and thus yet to be integrated into broader concepts of vertebrate evolution. We map the most comprehensive dataset of sound production yet assembled onto a family-level phylogeny of ray-finned fishes (Actinopterygii), a clade containing more than 34,000 extant species. Family-, rather than species-, level analyses allowed broad investigation of sound production mostly based on illustrations of acoustic recordings and morphological specializations (82%) strongly indicative of sound production along with qualitative descriptions (18%), and a conservative estimate of the distribution and ancestry of a character that is likely more widespread than currently known. Compilation of sonic-related morphological characters shows 60 families exhibiting muscles coupled to swim bladder vibration and 39 families that employ movement of skeletal parts against each other, i.e., stridulation. Eighteen of these families, mostly catfishes (13), include individual species exhibiting both mechanisms. The results show that families with soniferous species contain nearly two-thirds of actinopterygian species, including a clade originating circa 155 Ma, and that sound production has independently evolved approximately 33 times within Actinopterygii. Despite the uncertainties of presence-only data records and incomplete evidence of absence, under-sampling species, and assuming family-level conservation of sound production, sensitivity analyses show that these patterns of shared ancestry are robust. In aggregate, these findings offer a new perspective on the ancestry and convergent evolution of sound production among actinopterygians, a clade representing more than half of extant vertebrate species.

Highlights

  • BioOne Complete is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses

  • Evidence of soniferous behavior was identified in 175 of the 470 families represented in the phylogenetic hypothesis presented by Rabosky et al (2018; Fig. 1, Table S1; see Data Accessibility) based on our three sources of evidence (Fig. 2, see Materials and Methods): 52 families were supported by acoustic recordings or analysis, 26 families by inference based on morphological characters well known to be associated with sound production, 66 families by both acoustic and morphological evidence, and 31 families by qualitative descriptions indicative of soniferous behavior

  • Soniferous behavior occurs in the three extant clades of non-teleostean actinopterygians (Polypteriformes, Acipenseriformes, Holostei; Fig. 2), the reconstruction reveals that it is unlikely to be ancestral with probability values of only 32.3% for Actinopterygii and 16.6% for Teleostei, which comprises .99.8% of actinopterygian species (Nelson et al, 2016)

Read more

Summary

Introduction

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Despite the uncertainties of presence-only data records and incomplete evidence of absence, under-sampling species, and assuming family-level conservation of sound production, sensitivity analyses show that these patterns of shared ancestry are robust In aggregate, these findings offer a new perspective on the ancestry and convergent evolution of sound production among actinopterygians, a clade representing more than half of extant vertebrate species

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call