Abstract

Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110 transposases, which catalyze RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. Based on conservation in the protein primary sequence, domain architecture, and three-dimensional structure, as well as common architectural features of the non-coding RNA components, we propose that programmable RNA modification emerged via exaptation of components derived from IS110-like transposons. Alongside recent studies highlighting the origins of CRISPR-Cas9 and Cas12 in IS605-family transposons, these findings underscore how recurrent domestication events of transposable elements gave rise to complex RNA-guided biological mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.