Abstract

AbstractPheromone-based stigmergic communication is well suited for the coordination of swarm of robots in the exploration of unknown areas. We introduce a guided probabilistic exploration of an unknown environment by combining random movement and stigmergic guidance. Pheromone-based stigmergic communication among simple entities features various complexities that have significant effects on the overall swarm coordination, but are poorly understood. We propose a genetic algorithm for the optimization of parameters related to pheromone-based stigmergic communication. As a result, we achieve human-competitive tuning and obtain a better understanding of these parameters.KeywordsGenetic AlgorithmMultiagent SystemReal RobotUnknown EnvironmentPheromone ConcentrationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.