Abstract

Abstract Optimisation of injection rates is an important design consideration for meeting operational objectives and ensuring long term geological storage of CO 2 in saline aquifers. The optimal design should also take into account the uncertainties associated with the subsurface (e.g., petrophysical attribution and structural relationships). Detailed geological models along with different realisations for handling uncertainties increase the computational overheads, making the optimisation problem intractable. To circumvent this problem, upscaled models can be used to speed up the identification of optimal solutions. Nevertheless, a grid resolution, which does not compromise the accuracy of the optimisation in an upscaled model, must be carefully determined. The methodology described in this paper aims to address this requirement. In this study, a 3D geological model, comprising the main oil reservoirs of the Forties and Nelson hydrocarbon fields and the adjacent saline aquifer, was built to examine the use of coarse grid resolutions to design an optimal CO 2 storage solution for this area within the UK Central North Sea. Simulation results for single objective optimisation show that an upscaled grid resolution can be identified which is a trade-off between accuracy and computational time. The outlined methodology is generic in nature and can be ported to other similar optimisation problems for CO 2 storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.