Abstract

• Evolutionary neural networks (ENN) is used for modeling pan evaporation. • Data from two stations of Turkey are used in the study. • ENN models are compared with fuzzy genetic, neuro-fuzzy and ANN methods. • ENN models perform better than the other models. • Pan evaporation can be successfully estimated by the ENN method. Estimating pan evaporation is very important for monitoring, survey and management of water resources. This study proposes the application evolutionary neural networks (ENN) for modeling monthly pan evaporations. Solar radiation, air temperature, relative humidity, wind speed and pan evaporation data from two stations, Antalya and Mersin, in Mediterranean Region of Turkey are used in the study. In the first part of the study, ENN models are compared with those of the fuzzy genetic (FG), neuro-fuzzy (ANFIS), artificial neural networks (ANN) and Stephens–Stewart (SS) methods in estimating pan evaporations of Antalya and Mersin stations, separately. Comparison results indicate that the ENN models generally perform better than the FG, ANFIS, ANN and SS models. In the second part of the study, models are compared with each other in estimating Mersin’s pan evaporations using input data of both stations. Results reveal that the ENN models performed better than the FG, ANFIS and ANN models. It was concluded that monthly pan evaporations can be successfully estimated by the ENN method. The performance of the ENN model with full weather data as inputs presents 0.749 and 0.759 mm of mean absolute error for the Antalya and Mersin stations, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.