Abstract

In this paper, we address the pickup and delivery problem with time windows (PDP-TW) and heterogenous vehicles for minimisation of total tardiness by learning heuristics from a given set of solutions. In order to extract scalable heuristics from optimal or best feasible solutions, we propose a machine-learning (ML)-based approach called ENSIGHT (Evolutionary Neural network with Scalable Information for Generation of Heuristics for Transportation). ENSIGHT consists of three phases: solution generation, interpretation of solutions, and improvement of heuristics by an evolutionary neural network (ENN). First, a set of optimal or best feasible solutions for the training set of problem instances is acquired by using the proposed mathematical model. Second, as for the process interpreting those solutions, an approach for transforming them into training data by way of scalable input attributes as well as output discretisation is followed. Third, the ENN improves the learned heuristics by an evolutionary parameter optimisation process for minimization of total tardiness. To verify the performance of the proposed ENSIGHT, we conducted experiments and the results of which showed that it outperforms other ML techniques and the current dispatching rules (DRs). Moreover, the approach was demonstrated to be effective in learning scalable heuristics based on combined scalable inputs and discretisation as well as an evolutionary improvement process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.