Abstract

With the advent of Industry 4.0, making accurate predictions of the remaining useful life (RUL) of industrial components has become a crucial aspect in predictive maintenance (PdM). To this aim, various Deep Neural Network (DNN) models have been proposed in the recent literature. However, while the architectures of these models have a large impact on their performance, they are usually determined empirically. To exclude the time-consuming process and the unnecessary computational cost of manually engineering these models, we present a Neural Architecture Search (NAS) technique based on an Evolutionary Algorithm (EA) applied to optimize the architecture of a DNN used to predict the RUL. The EA explores the combinatorial parameter space of a multi-head Convolutional Neural Network with Long Short Term Memory (CNN-LSTM) to search for the best architecture. In particular, our method requires minimum computational resources by making use of an early stopping policy and a history of the evaluated architectures. We dub the proposed method ENAS-PdM. To our knowledge, this is the first work where an EA-based NAS is used to optimize a CNN-LSTM architecture in the field of PdM. In our experiments, we use the well-established Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset from NASA. Compared to the current state-of-the-art, our method obtains better results in terms of two different metrics, RMSE and Score, when aggregating across all the C-MAPSS sub-datasets. Without aggregation, we achieve lower RMSE in 3 out of 4 sub-datasets. Our experimental results verify that the proposed method is a reliable tool for obtaining state-of-the-art RUL predictions and as such it can have a strong impact in several industrial applications, especially those with limited available computing power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call