Abstract

Automated negotiation has become increasingly important since the advent of electronic commerce. In an efficient market, goods are not necessarily traded in a fixed price, and instead buyers and sellers negotiate among themselves to reach a deal that maximizes the payoffs of both parties. In this paper, a genetic agent-based model for bilateral, multi-issue negotiation is studied. The negotiation agent employs genetic algorithms and attempts to learn its opponent's preferences according to the history of the counter offers based upon the stochastic approximation. We also consider two types of agents: level- 0 agents are only concerned with their own interest while level-1 agents consider also their opponents' utility. Our goal is to develop an automated negotiator that guides the negotiation process so as to maximize both parties' payoff.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.