Abstract

As the demand for solar energy increases dramatically, the optimization and control of photovoltaic systems become increasingly important, accurate and reliable parameter identification of photovoltaic models is always required, which proposes an urgent need for accurate and robust algorithms. To this end, many heuristic algorithms have been proposed to extract the parameters of different photovoltaic models. However, they only extract the parameters of one model in a single run, which is inconsistent with the human ability to solve multiple tasks simultaneously and ignores the useful information derived from different models. Therefore, in this paper an evolutionary multi-task optimization algorithm is proposed to extract the parameters of multiple different photovoltaic models simultaneously. To be specific, the helpful information found by the population is transferred through the cross-task crossover to improve the performance in terms of solution quality and convergence rate of the population. The proposed algorithm is evaluated by extracting the parameters of three different models simultaneously, i.e., single diode, double diode, and photovoltaic module model. Comprehensive results demonstrate that the proposed algorithm has better performance with respect to the accuracy and robustness in comparison with other state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.