Abstract
Evolutionary robotics is an approach for optimizing a robotic control system and structure based on the bio-inspired mechanism of adaptiogenesis. Conventional evolutionary robotics assigns a task and an evaluation to a virtual robot and acquires an optimal control system. In many cases, however, the robot is composed of a few rigid primitives and the morphology imitates that of real animals, insects, and artifacts. This paper proposes a novel approach to evolutionary robotics combining morphological evolution and soft robotics to optimize the control system of a soft robot. Our method calculates the relational dynamics among morphological changes and autonomous behavior for neuro-evolution (NE) with the development of a complex soft-bodied robot and the accomplishment of multiple tasks. We develop a soft-bodied robot composed of heterogeneous materials in two stages: a development stage and a locomotion stage, and we optimize these robotic structures by combining an artificial neural network (ANN) and age-fitness pareto optimization (AFP). These body structures of the robot are determined depending on three genetic rules and some voxels for evolving the ANN. In terms of our experimental results, our approach enabled us to develop some adaptive structural robots that simultaneously acquire behavior for crawling both on the ground and underwater. Subsequently, we discovered an unintentional morphology and behavior (e.g., walking, swimming, and crawling) of the soft robot through the evolutionary process. Some of the robots have high generalization ability with the ability to crawl to any target in any direction by only learning a one-directional crawling task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.