Abstract
This article provides a general overview of the field now known as multi-objective optimization, which refers to the use of evolutionary algorithms to solve problems with two or more (often conflicting) objective functions. Using as a framework the history of this discipline, we discuss some of the most representative algorithms that have been developed so far, as well as some of their applications. Also, we discuss some of the methodological issues related to the use of multi-objective evolutionary algorithms, as well as some of the current and future research trends in the area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.