Abstract

This paper studies the trajectory control and task offloading (TCTO) problem in an unmanned aerial vehicle (UAV)-assisted mobile edge computing system, where a UAV flies along a planned trajectory to collect computation tasks from smart devices (SDs). We consider a scenario that SDs are not directly connected by the base station (BS) and the UAV has two roles to play: MEC server or wireless relay. The UAV makes task offloading decisions online, in which the collected tasks can be executed locally on the UAV or offloaded to the BS for remote processing. The TCTO problem involves multi-objective optimization as its objectives are to minimize the task delay and the UAV's energy consumption, and maximize the number of tasks collected by the UAV, simultaneously. This problem is challenging because the three objectives conflict with each other. The existing reinforcement learning (RL) algorithms, either single-objective RLs or single-policy multi-objective RLs, cannot well address the problem since they cannot output multiple policies for various preferences (i.e. weights) across objectives in a single run. An evolutionary multi-objective RL (EMORL) algorithm is applied to address the TCTO problem. We improve the multi-task multi-objective proximal policy optimization of the original EMORL by retaining all new learning tasks in the offspring population, which can preserve promissing learning tasks. The simulation results demonstrate that the proposed algorithm can obtain more excellent non-dominated policies by striking a balance between the three objectives regarding policy quality, compared with two evolutionary algorithms, two multi-policy RL algorithms, and the original EMORL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call