Abstract

Abstract Image outlier detection has been an important research issue for many computer vision tasks. However, most existing outlier detection methods fail in the high-dimensional image datasets. In order to address this problem, we propose a novel image outlier detection method by combining autoencoder with Adaboost (ADAE). By ensembling many weak autoencoders, our method can better capture the statistical correlations among the features of normal data than the single autoencoder. Therefore, the proposed ADAE is able to determine the outliers efficiently. In order to reduce the many parameters in ADAE, we introduce the Sparse Group Lasso (SGL) constraint into the learning objective of ADAE. We combine Adagrad with Proximal Gradient Descent to optimize this additional learning objective. We also propose the multi-objective evolutionary algorithm to determine the best penalty factors of SGL. By evaluating on several famous image datasets, the detection results testify to the outstanding outlier detection performance of ADAE. The evaluation results also show SGL can make the detection model more compact while maintaining the similar detection performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.