Abstract

A blocking lot-streaming flow shop scheduling problem with interval processing time has a wide range of applications in various industrial systems, however, not yet been well studied. In this paper, the problem is formulated as a multi-objective optimization problem, where each interval objective is converted into a real-valued one using a dynamically weighted sum of its midpoint and radius. A novel evolutionary multi-objective optimization algorithm is then proposed to solve the re-formulated multi-objective optimization problem, in which non-dominated solutions and differences among parents are taken advantage of when designing the crossover operator, and an ideal-point assisted local search strategy for multi-objective optimization is employed to improve the exploitation capability of the algorithm. To empirically evaluate the performance of the proposed algorithm, a series of comparative experiments are conducted on 24 scheduling instances. The experimental results show that the proposed algorithm outperforms the compared algorithms in convergence, and is more capable of tackling uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.