Abstract
Abstract The X-ray emission from a supernova remnant (SNR) is a powerful diagnostic of the state of the shocked plasma. The temperature (kT) and the emission measure (EM) of the shocked gas are related to the energy of the explosion, the age of the SNR, and the density of the surrounding medium. Progress in X-ray observations of SNRs has resulted in a significant sample of Galactic SNRs with measured kT and EM values. We apply spherically symmetric SNR evolution models to a new set of 43 SNRs to estimate ages, explosion energies, and circumstellar medium densities. The distribution of ages yields an SNR birth rate. The energies and densities are well fit with lognormal distributions, with wide dispersions. SNRs with two emission components are used to distinguish between SNR models with uniform interstellar medium and with stellar wind environment. We find Type Ia SNRs to be consistent with a stellar wind environment. Inclusion of stellar wind SNR models has a significant effect on estimated lifetimes and explosion energies of SNRs. This reduces the discrepancy between the estimated SNR birth rate and the SN rate of the Galaxy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.