Abstract

This paper presents an approach for evolving optimum behaviors for a nonholonomic mobile robot in a class of dynamic environments. A new evolutionary algorithm reflecting some powerful features in the natural evolutionary process to have flexibility to deal with changes in the environment is used to evolve optimum behaviors. Furthermore, a fuzzy set based multi-objective fitness evaluation function is adopted in the evolutionary algorithm. The multi-objective evaluation function is designed so that it allows incorporating complex linguistic features that a human observer would desire in the behaviors of the mobile robot movements. To illustrate the effectiveness of the proposed method, simulation results are compared using a conventional evolutionary algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.