Abstract

In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.

Highlights

  • Bacteriophages are the most populous organisms in the biosphere, but surprisingly little is known about their natural diversity and host ranges (Dennehy, 2014)

  • Based on our bioinformatic analyses, we report that M. smegmatis is unlikely to be the preferred host for many of these newly isolated bacteriophages

  • While the high DNA GC content of the mycobacteriophages with small genomes seems at odds with the correlation between GC content and genome size, this trait is likely to be a result of correlations between the mycobacteriophages and their high-DNA-GC-content mycobacterial hosts (e.g. M. smegmatis DNA GC content: 68 mol%) (Bahir et al, 2009; Andersson & Sharp, 1996; Xia & Yuen, 2005)

Read more

Summary

Introduction

Bacteriophages are the most populous organisms in the biosphere, but surprisingly little is known about their natural diversity and host ranges (Dennehy, 2014). One of the beststudied groups of phages are the mycobacteriophages, which infect mycobacterial hosts such as Mycobacterium tuberculosis and Mycobacterium smegmatis. Students participating in the Howard Hughes Medical Institute (HHMI)sponsored Science Education Alliance–Phage Hunters ã 2016 The Authors.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.