Abstract
In this study, we propose evolutionary instance selection based on the Takagi-Sugeno (T-S) fuzzy model. The previous neural network with weighted fuzzy membership functions (NEWFM) supports feature selection; thus, it enables the selection of minimum features with the highest performance. The enhanced NEWFM supports a weighted mean defuzzification in the T-S fuzzy model with a confidence interval in the normal distribution; thus, it enables the selectio n of minimum instances with the highest performance. The enhanced NEWFM has two stages; feature selection is performed in the fir st stage, whereas instance selection is performed in the second stage. The performance of the enhanced NEWFM is comparedwith that of the previous NEWFM. In addition, McNemar's test reveals a significant difference between the performances of both NE WFMs (p< 0.05).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.