Abstract

BackgroundChargaff's rule of DNA base composition, stating that DNA comprises equal amounts of adenine and thymine (%A = %T) and of guanine and cytosine (%C = %G), is well known because it was fundamental to the conception of the Watson-Crick model of DNA structure. His second parity rule stating that the base proportions of double-stranded DNA are also reflected in single-stranded DNA (%A = %T, %C = %G) is more obscure, likely because its biological basis and significance are still unresolved. Within each strand, the symmetry of single nucleotide composition extends even further, being demonstrated in the balance of di-, tri-, and multi-nucleotides with their respective complementary oligonucleotides.ResultsHere, we propose that inversions are sufficient to account for the symmetry within each single-stranded DNA. Human mitochondrial DNA does not demonstrate such intra-strand parity, and we consider how its different functional drivers may relate to our theory. This concept is supported by the recent observation that inversions occur frequently.ConclusionAlong with chromosomal duplications, inversions must have been shaping the architecture of genomes since the origin of life.

Highlights

  • Chargaff's rule of DNA base composition, stating that DNA comprises equal amounts of adenine and thymine (%A = %T) and of guanine and cytosine (%C = %G), is well known because it was fundamental to the conception of the Watson-Crick model of DNA structure

  • An and Tn are defined as the frequency of any particular oligonucleotide sequence and its reverse complementary sequence, respectively, in the same strand after n inversions (n > 0)

  • Inversions or interchromosomal rearrangements could render the duplicated gene nonfunctional due to its release from interaction with its promoter or other regulatory elements. This may be one reason why many inverted and interchromosomal segmental duplications are found in the human genome [25,26]

Read more

Summary

Introduction

Chargaff's rule of DNA base composition, stating that DNA comprises equal amounts of adenine and thymine (%A = %T) and of guanine and cytosine (%C = %G), is well known because it was fundamental to the conception of the Watson-Crick model of DNA structure. His second parity rule stating that the base proportions of double-stranded DNA are reflected in single-stranded DNA (%A = %T, %C = %G) is more obscure, likely because its biological basis and significance are still unresolved. In spite of these anomalies, any violation of the second parity phenomena is generally small in magnitude [8,20]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.