Abstract

A bioinformatics analysis was conducted on the four members of the uterine serpin (US) family of serpins. Evolutionary analysis of the protein sequences and 86 homologous serpins by maximum parsimony and distance methods indicated that the uterine serpins proteins form a clade distinct from other serpins. Ancestral sequences were reconstructed throughout the evolutionary tree by parsimony. These suggested that some branches suffered a high ratio of nonsynonymous to synonymous mutations, suggesting episodes of adaptive evolution within the serpin family. Analysis of the sequences by neutral evolutionary distance methods suggested that the uterine serpins diverged from other serpins prior to the divergence of the mammals from other vertebrates. The porcine uterine serpins are paralogs that diverged from a single common ancestor within the Sus genus after pigs separated from other artiodactyls. The uterine serpins contain several protein kinase C and tyrosine kinase phosphorylation sites. These sites may be important for the lymphocyte-inhibitory activity of OvUS if, like other basic proteins, OvUS can cross the cell membrane of an activated lymphocyte. Internalized OvUS could serve as an alternative target to protein kinases important for the mitogenic response to antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call